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Abstract

The explosion of online services created a surge of interest on how to
quantify the value of personal data. Recent studies have focused on its
private cost, i.e., the amount at which users are willing to give it away.
An appropriate quantification should, however, also take into account the
benefit (or profit) users can get by releasing it. In this paper, we argue
that this makes the question much more complex because profit is not
extracted directly from personal data but from the information derived
from it, which has a very different economic nature: it is a public good
and it has strong local externalities driven by the social network in which
users are naturally embedded.

We propose a cooperative game-theoretic approach to quantify the
value of personal data in networks. We model the system as a local public
good game and we propose a natural extension to a cooperative game.
We apply classical allocation solutions (the core and the Shapley value)
to quantify the value of each user’s personal data. We prove that the
game and the proposed allocations have good mathematical properties.
Finally, we analyze the impact of the social network structure.

Keywords: Personal Data, Social Network, Cooperative Game The-
ory, Core, Shapley Value

1 Introduction

1.1 Motivations

The Internet has become an essential part of the citizens’ life and of the econ-
omy in many countries. In this online ecosystem, service providers collect large
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amounts of personal data about individuals (e.g., their shopping behaviors col-
lected through tracking or login mechanisms) and use it to offer services (e.g.,
product recommendations or targeted advertising) from which they derive high
profits. Personal data therefore has clear intrinsic economic value, which is
extensively exploited by online services. At the same time, users also benefit
from this ecosystem by being granted free access to services but it is unclear
whether this appropriately compensates them for the release of their personal
data. As the amount of data collected by online services is exploding, users
and organizations increasingly ask for more fair, transparent, and personalized
compensations. This naturally raises the question of how much is personal data
worth?, which recently gained very high interest [38].

Quantifying the value of personal data is a very difficult task. Firstly, most
research studies have focused on quantifying the private cost of releasing per-
sonal data, that is the amount at which users are willing to give it away [3].
An appropriate quantification, however, should also take into account the profit
that can be extracted from the data by online service providers. Secondly, profit
is not extracted directly from the personal data itself but from the information
the provider can derive from it (e.g., users movie interests or sports activities),
which has a very different economic nature. Indeed, while personal data is a pri-
vate good that users can voluntarily decide to disclose at a given private cost,
the information derived from it has a strong public component: information
derived from personal data of a user may benefit other users (e.g., by improv-
ing the quality of the recommendation algorithm). Taking into account such
externalities is key for an appropriate quantification. Lastly, as many online
services collect data not only about individual users but also about the social
interactions among them, the strongest externalities are local externalities: in-
formation can be derived about a user from the personal data released by her
neighbors in the social graph. The position of the users in the social graph
therefore plays a crucial role in the quantification of the value of their personal
data.

1.2 Contribution

In this paper, we propose a game-theoretic approach to quantify the value of
personal data that addresses the key difficulties mentioned above. Following the
economic literature [4, [43], we model the public component of the provider’s in-
formation by treating it as a public goodH More specifically, to take into account
the local externalities, we propose to model users interactions as a local pub-
lic good game: users contribute by releasing personal data (at a private cost)
and benefit from the local public good (the information derived about them
that allows the provider to give them good service). The information about
the users depends on the data released by themselves and by their neighbors in
the social graph. Then, we propose to use solutions of a cooperative extension

LA public good is a good that is non-rivalrous (i.e., such that consumption of the good by
a user does not reduce availability to others) and non-excludable (i.e., it is not possible to
exclude users from benefiting from the good).



of this game, which measure the contribution of a user to the value extracted
from the information derived from personal data (minus private cost), to quan-
tify the value of the personal data released by a user. A cooperative solution
can provide fair quantification of the value of personal data taking into account
both the private cost of users and the profit extracted by the provider. Such
a quantification can be used for monetization, i.e., to price the data. It could
also be used by an online service to determine the users with most valuable in-
formation, e.g., to offer discounts, or to target them as participants of an online
survey, when involving all the players can be costly. Cooperation amongst users
could be implemented by allowing them to negotiate effectively, or through an
intermediary between the provider and the users; the intermediary would im-
plement our solutions to compute the monetary transfers on each side. Since,
as is typical with public goods, the strategic equilibrium of our game (i.e., when
users are rewarded solely by being granted access to the service) is inefficient,
the cooperative ecosystem would be likely sustained by all actors because coop-
eration yields a strictly higher welfare which can be shared in the interest of all
parties.

Motivated by the application to quantifying the value of personal data as
explained above, our main technical contribution is the proposition of a cooper-
ative extension of a classic local public good game [8], [9] and its analysis. More
specifically:

1. We propose a sensible extension of the strategic local public good game
introduced by Bramoullé and Kranton [8 [0]. Our extension follows in
spirit other extensions previously adopted in studies of economies with
public goods (see Section , but extends those to include the network.
We prove that the resulting cooperative game is equivalent to the minimax
extension proposed by von Neumann and Morgenstern [48].

2. We analyze the properties of the cooperative game. In particular, we show
that the game is monotonic and superadditive.

3. We propose to use the core and the Shapley value to quantify the value of
personal data. We show that the core is non-empty and that it is therefore
possible to find a stable allocation of welfare, which is an allocation such
that no coalition will have incentives to stop cooperating with the other
players. The Shapley value, on the other hand, is not guaranteed to be
stable but has other desirable properties such as symmetry/fairness. We
show examples in which the Shapley value belongs to the core.

4. Finally, we analyze how the allocations depend on the graph. We use
network games, an extension of cooperative games proposed by Jackson
and Wolinsky [28] which permit to model the dependence of the value
function on the graph, to carry the analysis. In particular, we show that
it is beneficial for the players to create new links and that the only stable
network is given by the complete graph, in which each player is connected
to every other player.



While games on graphs and local public good games more specifically are well-
known and widely used in economics and computer science, our work is, to
the best of our knowledge, the first study on cooperative extensions of such
games in the field of the information economics and, more specifically, of the
Internet economics. Besides the main motivation of quantification of the value
of personal data, we expect that it will find applications in other areas that are
well modeled by local public goods.

The remainder of the paper is organized as follows. We review related works
in Section [I.3] In Section [2] we present the local public good game. Section [3]
describes the cooperative extension and the solution concepts. In Section |4 we
analyze some properties of the cooperative game and solutions. We study the
graph influence in Section[5] We conclude in Section[6] Due to space constraints,
proofs can be found in appendix.

1.3 Related Works

Economics of personal data. Academic concerns about the economic value of
personal data date back to the 90’s with the informal discussions of Laudon [31]
and Varian [47]. More recently, some experimental studies have been conducted
that aim to quantify the value that users assign to their personal data in different
scenarios, see e.g., Huberman et al. [25], Acquisti et al. [2] or Acquisti and
Grossklags [I]. Pu and Grossklags also conducted a recent experimental study
to measure how much users value their friend’s personal data [39].

The game-theoretic analysis of the private data monetization was pioneered
by Kleinberg et al. [30], who proposed fair compensation mechanisms for per-
sonal data based on cooperative game theory. Their solutions are based on
the core and on the Shapley value like ours, but their simple model does not
take into account the public good nature of information which is the main fo-
cus of our paper. Recently, a significant thread of research started on selling
personal data using auctions: Ghosh and Roth [22], Dandekar et al. [I6], Roth
and Schoenebeck [42] and Ligett and Roth [33]. In all those works, the loss of
privacy by releasing data is quantified using differential privacy [18]. Riederer
et al. [4I] propose a mechanism called “transactional privacy” where users can
sell access to their data through an unlimited supply auction.

All the aforementioned works only consider the private cost of revealing
personal data, i.e., the cost incurred by an individual on account of his loss of
privacy independently of the data revealed by others. In a recent work, Ioannidis
and Loiseau [20] (see also extensions of the initial model by Chessa, Grossklags
and Loiseau [14] 13]) propose a different model which takes into account the
public good nature of information. They analyze the game as a non-cooperative
game and provide results on Nash equilibrium and price of anarchy, but they
do not investigate cooperative solutions to reach efficiency. Their model also
does not take into account the local interactions that happen within a social
network. An extension to a graph setting was proposed in [40], but also only in
a non-cooperative setting.

Network games. In this paper, we consider users embedded in a social



network and use a graph to model the local public good nature of personal
information. Games on graphs have been studied in different contexts and with
different utility functions of the players, see e.g., the books of Jackson [27] and
Easley and Kleinberg [19] and the recent survey by Jackson and Zenou [29].
In particular games on graphs have recently been studied in two situations:
to model pricing problems with network externalities [10 [6 20] 2], 15] and to
model strategic propagation representing for instance product adoption [24] [32].
But the literature on the strategic interaction of the agents in networks is even
larger [46], 5] and, among many others, we mention Bramoullé and Kranton [§],
who described the model we adopt in this paper. These papers differ in the
utility model and interactions that they consider. All of these works, however,
consider a non-cooperative setting at the exception of Jackson and Wolinsky
[28] who partly use a cooperative approach to model the strategic interaction
of the agents on the link formation. Moreover, to the best of our knowledge,
no prior work has used games on graphs to model questions related to personal
information and quantification of its value.

Cooperative games for public goods. In this paper, we use a coop-
erative game-theory approach: we transform our local public good model in a
cooperative game and use classical allocation solutions to quantify the value of
personal information. The use of cooperative game theory methods to analyze
public good problems is standard in the economics literature. We mention in
particular the works of Champsaur [1I], Moulin [35] and Chander [12]. To the
best of our knowledge, however, no prior work has analyzed the impact of pos-
sible variations of the network in local public good problems using cooperative
game-theory methods.

2 The Model

In this section, we describe our basic model, in which users are embedded in a
social network and choose strategically the level of personal data to reveal.

2.1 The Social Network as a Graph

Let N = {1,...,n} be a set of players, representing the users. In our model,
the players are embedded in a social network (e.g., the Facebook network), that
we represent by an undirected graph, where the nodes identify the players and
the links their pairwise relations. Formally, an undirected graph g on N is a
set of links, i.e., a set of unordered pairs of players {i,j}, that for simplicity we
denote by ij. For any pair of players ¢ and j, ij € g indicates that players ¢ and
Jj are linked in the graph ¢ (in our example, the users are “Facebook friends”).
Let gV be the complete graph, i.e., the set of all the unordered pairs of players
in N and G(N) = {g C g™} be the set of all the graphs on N. Given g € G(N),
let N;(g) = {j € N\ {i} : ij € g} be the set of neighbors of i in g, i.e., the set
of players which are linked to player ¢ by the graph g, and n;(g) = |N;(g)] its
cardinality, called degree of player i. Player i’s neighborhood in g is defined as



herself and her set of neighbors, i.e., as N;(g) = {i} U N;(g).

2.2 The utility functions

Given a set of players N and an undirected graph g, we adopt a model from [9]
for public goods in networks to describe their strategic interaction. Throughout
the paper, at the exception of Section [5] the graph ¢ is supposed to be a fixed
parameter (in Section [5] we analyze the case where the graph is assumed to be a
variable of the model). Each player in N chooses a disclosure level d; € [0,400)
of her personal data, which corresponds to her contribution to the public good,
the information. Depending on the situation at stake and its interpretation, this
disclosure level can represent the precision in revealing a single piece of data or
the total amount of data revealedﬂ Let d = (di,...,d,) denote a disclosure
profile of all players. In our model, data disclosed by a user benefits herself and
her neighbors. This situation typically occurs with personalized applications:
assuming that neighbors have similar tastes, data revealed by a user leads to
better personalization for herself and for all her “friends”. We consider a model
with positive externalities between neighbors, in which a neighbor’s disclosure
is a substitute with one’s own proportionally to a factor § € [0, 1], but a player
does not derive benefits from the disclosure of players with whom she does not
share a link. Intuitively, § is the measure of how much i’s neighbors directly
affect 7. Player ¢’s utility from profile d in graph ¢ is then given by

Ui(d,g)=f |di+6 Y dj| —kd, (1)

JENi(g)

where f is a twice differentiable function, with f(0) =0, f/ > 0 and f” < 0 and
k € R, is the cost to player 7 for one unit of disclosure level. The first component
f captures the benefit for player i, i.e., the benefit that player i receives when
the provider infers some information from her data and her neighbors’ (in terms,
for example, of good ad hoc recommendation); in particular, it is an increasing
function of the level of disclosure of player ¢ and of the total level of disclosure
of her neighbors. The second component is the privacy cost; it represents the
cost that player 4 incurs (for instance due to loss of privacy) by choosing a given
disclosure level and then it depends only on d;.

Note that the public good model we consider includes only positive exter-
nalities, i.e., benefits obtained by a user when her neighbors disclose data. This
assumption is well justified in our scenario. The utility defined in has a
positive component, the benefit, which is a function of the inferred informa-
tion (the public good), and a negative component, the privacy cost, which is
proportional to the amount of personal data a user decides to disclose (the pri-
vate good). There could be negative externalities due to inference of information

2 Note that we assume for simplicity that there is no bound on the disclosure level (d; €
[0, +00)). This assumption is very mild since, if the disclosure level is bounded by d sufficiently
large so that the disclosed levels at equilibrium or at the optimum are interior, all our results
are unchanged.



about player ¢ from his neighbors data. However, such negative externalities are
affecting only the public good component and can be captured by our model
in the benefit component f, for instance through a smaller §. Nevertheless, by
assuming § > 0, we implicitly model situations in which the benefits from neigh-
bors’ disclosure (positive externalities) is higher than the negative externalities.

In our model, both the function f and the cost k are independent of the
player i. When collecting real data on a social network, an online service may
easily obtain information about the graph structure of its users, but not as
easily about their privacy concerns. Many works have studied the problem of
estimating how much individuals value their personal data (see Section, but
implementing these mechanisms can be costly and time consuming for the online
service. In this paper, we take an orthogonal approach and choose to propose
solutions to quantify the value of personal data when the users differ only due
to their position in the social network, but are otherwise totally symmetric.

2.3 The Local Public Good Game

We describe the strategic interaction of the players through the following local
public good game

= (N,[0,+00)", (Us)ien), (2)

where N is the set of players, each player has strategy space given by [0, 4+00)
and her utility function is defined by . A Nash equilibrium (in pure strategy)
of T is defined as a disclosure profile d* € [0, +00)™ s.t.

d; € argdierf(l)ﬁ(oo) Ui(d;,d™;), Vi€ N, (3)
where we use the standard notation d_; to denote the collection of actions of
every player but 1.

A complete analysis of the local public good game T is provided in [9]. In
particular, the authors show that I' always has a Nash equilibrium, which may
not be unique. If we denote by d the disclosure level at which f/(d) = k (i.e.,
the marginal benefit to an individual equals its marginal cost), then any Nash
equilibrium d* is s.t., for every agent ¢ either 523‘6% () d; > d and df =0 or
6zj€Ni(g) di <dand di =d— 6Zj€Ni(g) d;.

We define the aggregate utility of the players in N, given a disclosure profile
d and the graph g, as the sum of their utilities:

W(d7 g) = Z Ui(d’ g)' (4)

i€EN

The aggregate utility represents the social welfare of the population. We say
that a profile d is efficient for a given graph g if it maximizes the social welfare,
i.e., if and only if there exists no other profile d’ such that W(d', g) > W(d, g);
and we denote by d° an efficient profile. A Nash equilibrium profile of T" is in



general non efficient. This outcome is typical of public good models, which often
yield non-efficient equilibria.

A powerful way to achieve efficient outcomes is to rely on cooperation. Agree-
ing to act cooperatively, the players may increase the aggregate utility to be
shared, choosing a strategy profile which maximizes the social welfare. To pro-
vide a complete analysis of the cooperative setting, which will be at the basis
of our quantification of the personal data of the users, in the next section we
propose a cooperative extension of the local public good model in which the
players can decide to make binding agreement and to coordinate to choose an
efficient profile.

Before moving to the cooperative analysis of the game, we introduce a last
notation. Given a disclosure profile d and the graph g, we define the total
service value

Vid,g) =Y fldi+d > dj, (5)

1EN JEN;(g9)

which corresponds to the sum of the value of the service for all users, and can
also be interpreted as the turnover of the provider (a fraction of which will
become its net revenue).

3 The Cooperative Extension

Public good models often yield non-efficient equilibria. An efficient outcome
can arise when regulatory mechanisms force the players to reach an efficient
solution (e.g., by establishing the amount of taxes citizens have to pay by law,
instead of letting them to freely contribute). Alternatively, in some different
real-world situations, the purpose of achieving efficiency may lead the users to
spontaneously create binding agreement between them and to commit to play
an efficient strategy. In this paper, we suppose that the players are moved by
this latter goal. We assume that they may decide to coordinate and strategically
centralize their choices about the quantity of personal data to disclose to the
provider, but that, at the same time, they maintain full control, as they can
choose whether or not to cooperate with the rest of the group.

3.1 The Cooperative Extension of the Local Public Good
Game

We extend the model proposed in Section [2] assuming that the players can
choose to centralize their choices. Situations in which players can cooperate by
establishing binding agreements among themselves (possibly through an inter-
mediary) and forming coalitions in order to coordinate their strategies and share
their joint payoff, are studied by cooperative game theory. We refer to [36] for



a complete account on the subject. Throughout the paper, in particular, we
model our situation as a TU (transferable utility) cooperative gameﬂ

Given a coalition of players S C N who decided to sign a binding agreement
between them, and given the graph g, we consider the subgraph of g reduced to
S, gls = {ijlij € g, i,5 € S} € G(S). The idea is that the players in S, while
making an agreement to cooperate, accept to reveal their connections, while the
group is not informed about the rest of the graph. In particular, information
about the links between two players in N \ .S, or between one player in S and
one player in N \ S is not available. For each player in S, a disclosure level of
personal data is selected. We denote by dg a disclosure profile for the players
in S. Given a disclosure profile dg, the utility of a player in S is still defined as
in , where the set of neighbors is now restricted to the set of neighbors who
are in S. Formally, when restricting to the coalition .5, for each player ¢ € S her
utility is defined as

Ui(ds,gls)=f [di+6 > dj | —kd (6)
JENi(gls)

We define the aggregate utility of the coalition S given a disclosure profile dg
as the sum of the utilities of the players in S on g|g, i.e., as

W(ds,gls) = > _ Ui(ds, gls). (7)

i€S

We denote an efficient profile by dg. Note again that the aggregate utility
of coalition S depends only on the pairwise relations between its players, and
not on the other links outside S.

A cooperative game is defined by a couple (N,v), where N is the set of
players and v : 2V — R, with v() = 0, is the characteristic function, which
assigns to every coalition S a worth v(S). In our model, we define the worth
of a coalition as the maximal aggregate utility the coalition can reach, i.e., for
each SC N, S #0,

o(S) = Wids.gls) =, max | W(ds.gls) (8)

Intuitively, the worth of a coalition is given by the maximum social welfare
that its players can reach by cooperating. Note that it is possible that there
exist multiple efficient disclosure profiles. However, as they all provide the same
aggregate utility, function v is univocally defined.

Note that our definition of the characteristic function assumes that the
worth of a coalition does not depend on the links which are external to the
coalition (and on the data revealed by players outside the coalition, even if they
have links with players inside). This is a standard assumption when extending a

3In such a game, we assume that players have the option to freely transfer among themselves
a commodity, usually money, to increase or decrease their payoffs.



non-cooperative game with externalities to a cooperative game and is the most
basic way to extend the local public good game, but it is also well justified in
our model. Indeed, it is reasonable to assume either that links from players
outside the coalition would not be revealed to the provider or, even if they were
known, that it would be illegal for an online service provider to make use of links
regarding a user who decided to refuse participating in the coalition. However,
the definition of the cooperative game takes into account all the possible coali-
tion structures, and the solutions we will propose in the following section are a
weighted average of all the contributions a user can bring to the different groups
of players. As a consequence, these solutions implicitly take into account all the
links which are present in our original network structure and strongly depend
on the local externalities.

If a coalition S C N of players decide to make an agreement for the disclosure
of their personal data, an efficient disclosure profile d$ is selected. The aggregate
utility of the players in S will be given by W(d%, g|s), while the total service
value for players in S will be given by V(dg, g|s).

3.2 The Allocation of Utilities

Given a set of players, we quantify the value of their personal data by a shar-
ing of the worth of the coalition between these players, as a reward for their
contribution.

Suppose for simplicity that all the players in N decide to cooperate, and
that the worth v(N) = W(dYy, ¢) has to be shared between them (everything
still holds for a coalition S C N). A utility share is given by an efficient
payoff allocation, i.e., by a vector © = (21,...,2,) € R" s.t., Y7,y = v(N)
(efficiency property). Each component z; is interpreted as the utility payoff
to player i. A solution for the game (N,v) is a function which associates to
every characteristic function v a (possibly empty) set of payoff allocations. In
the following, we propose to use the two most common concepts of solution for
cooperative game.

The first solution we propose to use is the core [23], which provides the
following set of efficient payoff allocations

Cv) = {:B|in:v(N)7in > v(9), VSCN}.

iEN €S

The fundamental idea of the core is that an agreement among the players in N
can only be binding if every coalition S C N receives collectively at least its
worth, i.e., the value that the players in S could obtain without collaborating
with the players in N\ S. In this way, single players and coalitions have no
incentive to deviate. The core is a very appealing solution due to this stability
property, but it may be empty.

The second solution we propose to use is the Shapley value [44]. Differently
from the core, this solution proposes a unique efficient payoff allocation and it

10



is always defined. The Shapley value, that we denote by ¢, is defined by the
following equation: given the characteristic function v, for every i € N

sy = 3 FE T Dl (i) - u(s)).

n!
SCN\{i}

It is a weighted sum of the contributions that player i brings while joining all
possible coalitions S C N \ {i}.

The Shapley value can also be defined axiomatically as the unique solution
satisfying efficiency, and the following three properties. (a) Symmetry: if two
players ¢ and j contribute to any coalition in exactly the same way, they must
be granted the same payoff. (b) Null player: if a player contributes nothing to
every coalition, he should receive zero. (¢) Additivity: the Shapley value of the
sum of two games must be equal to the sum of the Shapley values of the two
games.

In the remaining of this paper, we present the properties of our model, by
analyzing the cooperative game and the two solutions we proposed to share
the aggregated utility between the players and to quantify the value of their
personal data.

4 Properties of the Cooperative Extension

In this section, we first describe the coalition formation, in which we show that
it is convenient for all the players to cooperate together. Then, we show that it
is possible to implement some stable solutions for sharing the aggregate utility.
Finally, we provide some examples, to show that the Shapley value may also be
stable.

4.1 The Properties of the Cooperative Game

Deriving a characteristic function from an m-person strategic-form game is a
standard issue in game theory [37]. When analyzing cooperative games associ-
ated to economies with public goods and externalities, defining a worth for the
coalition S requires to also take into account the strategic choices made by play-
ers who are not members of S. In particular, the characteristic function should
specify explicitly the actions of both the players who are and who are not mem-
bers of the coalition. A standard way to get around this problem is to assume
that the players outside the coalition choose the strategies which are the least
favorable to the coalition, as in the well-known way of deriving a characteristic
function from an n-person strategic-game form proposed by Von Neumann and
Morgenstern [48]. Following their model, the characteristic function starting
from our game I' is defined for all S C N as

v'(S) = min max U;(os,0n\5:9),
) "N\SGA(DN\S)UseA(DS); (o5,0m5:9)

11



where A(Dg) (resp. A(Dn\g)) is the set of correlated strategies available to
coalition S (resp. N \ S). Here, Ui(ds,UN\S,g) denotes player i’s expected
payoff when the correlated strategies os and o\ g are implemented:

Ui(os,o0ns, 9) = Z Z os(ds)ons(dms)Ui(dn, g)-
ds dn\s

The idea behind the definition of von Neumann and Morgenstern is to assert
that the value of coalition S, v’(.S), is the maximum sum of utilities that the
players of coalition S can guarantee themselves against the best offensive threat
by the complementary coalition N \ S. The game (N,v’) is called the minimaz
representation in cooperative form of the strategic-form game I' with transfer-
able utility.

The minimax representation is a very convenient way to derive a charac-
teristic function from I' thanks to its properties. In particular, if we plan to
apply the core as solution concept, the inequality D, ¢ 2; < v'(S) is necessary
and sufficient for the players in S to be able to guarantee themselves payoffs
that are strictly better than in x, no matter what the other players in N \ S
do. However, the definition of the minimax representation is not trivial, both
from an analytic and a computational point of view, as it is defined over all the
correlated strategies. Also, in our setting, the minimax representation does not
have a clear interpretation as the characteristic function we defined in has.
Yet, our first result shows that the definition of our characteristic function v in
and of the minimax representation v’ coincide for our game.

Proposition 1 The cooperative game (N, v) is equivalent to the minimax rep-
resentation of the game T, i.e.,

v(S) ='(S), VSCN.

In particular, this result implies that our game (N, v) enjoys all the nice
properties of (N, v’), but through a simpler definition of the characteristic func-
tion, both from the analytical and from the computational point of view, with
a clearer interpretation.

We now define two important properties of cooperative games. A cooperative
game (N, v) is said to be monotonic if

SCTCN =S <o),

meaning that a larger coalition always has a larger worth. A cooperative game
(N, v) is said to be superadditive if

SNT=0=v(S)+v(T)<v(SUT).

Superadditivity implies that the worth of the coalition N of all players is at
least as large as the sum of the worths of the members of any partition of N.
The following corollary states that, as a consequence of Proposition [l our game
satisfies these two properties.

12



Corollary 1 The game (N, v) is monotonic and superadditive, i.e., every player
has incentives to cooperate with the others and the grand coalition will form.

The monotonicity ensures that, under cooperation, the aggregate utility in-
creases when a new player decides to make an agreement with the others. Most
importantly, superadditivity ensures that it is optimal to form the grand coali-
tion. In particular, whenever the worth is shared in an advantageous way for
everyone, it is not convenient for a player to abandon the coalition and it is
not convenient to decentralize the cooperation between two different groups of
players. Because of these important properties, in the following we can assume
that the grand coalition forms and that the total utility to be shared is equal
to v(N).

Now, we observe that also the total service value increases, when the players
decided to cooperate to adopt an efficient disclosure level.

Theorem 1 For any efficient disclosure profile d® and any Nash equilibrium
profile d*, we have V(d,g) > V(d*,g), i.e., the total service value is higher
under cooperation. In particular, V(d®, g) > V(d"*, g) if g is not totally discon-
nected.

Corollary [[]and Theorem [I] ensure that, as the cooperation can improve the
utility of both the players (the users) and the provider, it is likely to occur and
to be sustained by all the actors. In the following, we assume that the players
act cooperatively and we analyze the properties of the payoff allocations we have
proposed in the previous section.

4.2 The Properties of the Allocations

The first solution we proposed, the core, is very appealing, in view of the assump-
tion that a payoff allocation in the core ensures that any coalition can negotiate
effectively and that such a solution is stable against deviation by selfish coali-
tions of players. Unfortunately, for some games, the core may be empty, and if
this happens, no matter what allocation may occur, there is always a coalition
that would gain by deviating. The following result ensures that this is not the
case for our game (N,v), and that there always exists at least a stable payoff
allocation.

Theorem 2 The game (N, v) has a nonempty core, i.e., there exists an efficient
and stable allocation such that no subset of players has incentives to deviate.

Theorem [2| shows that the core of our game (IV,v) is non-empty, but it does
not provide a concrete construction to find a vector in the core. Regardless
of its importance, when the core is large, this solution can be difficult to ap-
ply as a predictive theory, due to the high number of stable allocations. To
provide a specific vector in the core, it is possible to compute the nucleolus,
a powerful pointwise solution that has been shown to be stable whenever the
core is nonempty [I7, B6]. The nucleolus is defined in terms of objections and
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counterobjections, or, equivalently, as the unique vector minimizing the dis-
satisfaction of the members of any possible coalition, in a lexicographic order.
Unfortunately, computing the nucleolus is, in general, costly.

The second solution we proposed, the Shapley value, is a very powerful tool
because of its fairness properties. However, it may be unstable. Even if also the
Shapley value is in general really costly, when it belongs to the core, it ensures
both a fair and stable outcome for the cooperating players, and it becomes a
very appealing solution concept, in particular for our purpose of quantifying
the value of personal data of the users. A sufficient condition for the Shapley
value to belong to the core is that our game satisfies the convexity propertyﬁ
Unfortunately, the convexity of our game remains an open question. Below, we
present two examples in which we can show that the Shapley value belongs to
the core. Whether this holds in general remains a conjecture whose investigation
is left as future work.

(a) (b)

Figure 1: Symmetric and star graphs.

Example 1 Let g be a symmetric graph. Then each player i € N has the same

Shapley value equal to

i(v) = lU(N).

n

This Shapley value allocation belongs to the core.

In particular, we observe that circles and complete graphs belong to the class
of symmetric graphs.

Example 2 Let g be a star graph. For simplicity, we denote by Sy a star of
cardinality h. Then the center player has the highest Shapley value, given by
1 n—2

1
bo(v) = (S + - Sl — k(51
while each player at the periphery has a Shapley value given by
n—2
1 1
(bP(’U) = E’U(Sn) — m ];Q[’U(Sk) — k’U(Sl)}

This Shapley value allocation belongs to the core.

4A cooperative game (N, v) is convez if VS, T C N, v(S) +v(T) <v(SNT)+v(SUT).
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5 The Impact of the Network

So far, we have assumed that the network structure was a fixed parameter. In
this section, we analyze the impact of this network, by considering the graph
as a variable of the model. In particular, we want to understand how the two
solutions we proposed in the previous section change when we modify the graph
and if they can induce the players to create or to remove some links strategically
in order to get a higher payoff. To this end, we use the formalism introduced by
Jackson and Wolinsky [28], who propose to define the notions of network games
and allocation rules for network games as natural extensions of cooperative
games and of allocation rules for cooperative games, respectively. These no-
tions allow keeping track of the overall value generated by a particular network
as well as how it is allocated across players, and of the way they vary depend-
ing on the graph. We first introduce some additional notations about graphs
complementing the ones in Section which are necessary for the analysis of
this section.

5.1 Background on Graphs

In this section, we assume that a graph g € G(N) may contain loops, where a
loop is a link ¢ which connects a player with herseleI Given the set of players
N and a graph g € G(N), we denote by g 4+ ij = g U {ij} the graph obtained
by adding the link i to the existing graph g and by g —ij = g\ {ij} the graph
obtained by removing the link. Let N(g) = {i|3j s.t. ij € g} be the set of
players who have at least one link in the graph g. A path in g connecting i; and
i is a set of distinct nodes {i1,...,4:} C N(g) such that {i1is,...,34—13:} C g.
The subgraph g’ C g is a component of g if either (a) N(g') = {i} and for all
Jj € N(g), ij € g implies that ¢ = j (i.e., ¢’ contains a single node which is
connected only to itself in g); or (b) for alli € N(¢') and j € N(¢'), i # j, there
exists a path in ¢’ connecting ¢ and j, and for any ¢ € N(¢') and j € N(g),
ij € g implies that ij € ¢’ (i.e., any two nodes in N(g') are connected by a path
and there is no path from a node in N(g’) to any other node in N(g) \ N(¢')).
The set of components of g is denoted by C(g).

5.2 The Network Game

The cooperative extension of the public good game I' can be naturally embedded
into the definition of network games. Given the cooperative game (NV,v) with
characteristic function defined by , we now underline the dependence on the
graph structure g, denoting it by (N, vy). This game is equivalent to a network
game (N, w), where N is the set of players, and w : G(N) — R, with w(@) = 0, is
the value function, which assigns to every graph g the worth w(g). Formally, our
cooperative game is equivalent to the network game defined for each g € G(NV)

5 Adding the presence of loops does not influence the model and the analysis of the previous
sections.
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by

w(g) = vg(N(g))- (9)

Given the corresponding network game, it is possible to go back to the original
cooperative game in (§)), as for each g € G(IN) and for each S C N, v,(S) =
w(gls).

A network game is an extension of a cooperative game, in which the partic-
ular structure of the network, and not only the subsets of the players, matters.
These two representations, focusing on different aspects, the graph and the
coalitions, permit to analyze different properties of the model. In particular,
the network game representation allows us to analyze how the social network
structure influences the efficient disclosure profile selected under cooperation
and the value of the personal data of the users depending on their position.

Differently from the original model in [28], we allow the graph to contain
loops. This is necessary to represent our cooperative game as a network game
because we need to be able to distinguish between two different cases. In the
first case, when an isolated player does not belong to the coalition S, she does
not contribute to the aggregate utility; in the network game, we model the
situation by assuming that she does not have links. In the second case, the
isolated player belongs to the coalition, but she does not share links with any
other player and then she maximizes her utility independently from the others;
then, we assume that this player is connected only to herself by a loop. In the
original model [28], it was not necessary to distinguish between these two cases,
as the utility of an isolated player was assumed to be zero.

5.3 The Properties of the Network Game

We now define some important properties for network games and we analyze
if they are satisfied by our model. Given the network game (INV,w), we say
that the value function is component additive if ), w(h) = w(g). This
condition rules out externalities across components, but still allows them within
components. Given a permutation of players 7 (a bijection from N to N), and
any g € G(N), let g™ = {w(i)7(j)|ij € g}. Thus, g™ is a network that shares
the same architecture as g but with the players relabeled according to w. A
value function is anonymous if for any permutation of the set of players m,
w(g™) = w(g). Anonymity says that the value of a network is derived from the
structure of the network and not the labels of the players who occupy various
positions. The following proposition states that our game, represented as a
network game with value function @D, satisfies both properties.

Proposition 2 The value function w defined in @D is component additive and
anonymous.

The property of component additivity is a consequence of the fact that our
model allows externalities only between connected players, in particular only
between neighbors. The property of anonymity is a consequence of the fact that
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f and k are independent from i. It guarantees that our model really focuses on
the network structure and that it captures the utility that a set of players can
generate because of their pairwise relations, independently from their labels.

A graph g € G(N) is said to be strongly efficient if w(g) > w(g’) for all
g € G(N), i.e., if it guarantees maximal total value. The following theorem
shows that the complete graph satisfies this important property for our model.

Theorem 3 The complete graph g~ is strongly efficient.

Theorem [3] states that the complete graph produces a maximal aggregate
utility for the grand coalition N. We can generalize this result noticing that for
each possible coalition S, the aggregate utility of S is maximal when all the links
are present. In the following result, we show that there may exist a strongly
efficient graph which is not complete, but that in this case, missing links are
only between non contributing players.

Corollary 2 Any strongly efficient graph g C g~ is s.t. N(g) = N and if
ij & g, then there exists an efficient disclosure profile d° such that d$ = d; = 0.

To complete our analysis of the network game, we first notice that a player
that discloses zero at an efficient profile cannot be isolated. Then, that in
order to be strongly efficient, a graph has to be fully connected. Moreover
we observe that, typically, players contributing zero at the efficient profiles are
players such that their neighborhood is included in the neighborhood of another
player, hence, intuitively, players whose links are not necessary for reaching any
other player.

5.4 The Properties of the Allocations for Network Games

After analyzing the property of the game as a function of the graph, we now
finally analyze the properties of the proposed solutions as functions of the graph.
We start by extending them to network games. In particular, the definition of
Shapley value for our game (N, v) corresponds to the definition of the Shapley
value as allocation rule for network games in [28], while also any vector in the
core of the cooperative game (N, v) can be interpreted as an allocation for the
corresponding network game (N, w). Formally, an allocation rule for network
games is a function Y : G(N) x W — R™ that associates, to a couple of a graph
and a value function, a payoff allocation (x1,...,x,).

A notion of stability for the graph with respect to a given allocation is
given by the following definition. A network g is pairwise stable with respect to
allocation rule Y and value function w if

(i) for all ij € g, Yi(g,w) > Yi(g — ij,w) and Y;(g,w) > Y;(g — ij,w), and
(ii) for all ij ¢ g, if Yi(g + ij,w) > Yi(g,w) then Y;(g + ij,w) < Y;(g,w).

In this definition, we assume that the formation of a link requires the consent
of both players involved, while severance can be done by one player unilaterally.
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Then, a network is pairwise stable if (i) no player wishes to severe a link that
she is involved in; and (ii) if one link is not in the graph and one of the involved
players would benefit from adding it, then it must be that the other player would
suffer from the addition of the link.

Our last two results provide stability results for the core and the Shapley
value as allocation rules of the network game (N, w).

Proposition 3 Given a non-complete graph g, for each payoff allocation in the
core C(vg) there exists a payoff allocation in the core C(vg4i;) which assigns at
least the same payoff to players i and j.

In particular, Proposition [3|implies that there exists a vector in the core such
that, if the graph is complete, no player has an incentive to break a link. Such
a payoff vector is then a stable allocation. Finally, the last corollary provides
an important stability result for the Shapley value as well.

Proposition 4 The complete graph ¢ is the only pairwise stable graph with
respect to the Shapley value allocation. In particular, every player has incentives
to create a new link to augment her own payoff.

Proposition @ shows that in our model, if the Shapley value is implemented as
solution to share the aggregate utility between the players, every player gains by
forming a new link. In this setting, the only social network which is stable is the
one in which each player is connected to every other player. When the complete
graph is the only strongly efficient graph, this result is intuitive because the
players may share a higher aggregate utility when creating links. Interestingly
though, it still holds when there exists a strongly efficient graph g C ¢V as the
following example illustrates.

Example 3 Suppose that g is a graph as in Figure@-(a), with parameter 6 = 1
(i.e., in a situation of perfect substitutability). Such a graph is strongly efficient.
However, while implementing the Shapley value to share their payoff, the two
extreme agents have incentives to create a new link as in Figure @r(b), at the
expense of the central player.

(a) (b)

Figure 2: Strategic creation of links.

At first sight, this last result may suggest that, in a situation in which players
from a social network are rewarded for their data, they have incentives to create
artificial links, in order to get a higher final payoff. This, however, would be an
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over interpretation. Indeed, our results suppose that all created links have the
same positive externality and affirm that players do have incentives to have a
higher number of effective real relations. On the contrary, to fully understand
the creation of artificial links that could occur, we would need to introduce
in the model a cost of link creation and potential negative externalities that
would arise (a fake link could bring bad recommendation and consequently to a
decreasing of the utility of the users). We leave this extension of the model as
future work. More simply, in the context of personal data, our results should be
interpreted as showing that when the graph is dense, this is beneficial for the
users and it augments the value of their personal contribution.

6 Concluding Remarks

In this paper, we propose a cooperative game-theoretic approach to quantify
the value of personal data in social networks with positive externalities. We use
a local public good game to model the private cost of revealing data and the
local public good component of the information derived from it. We propose
a cooperative extension and analyze two solutions: the core and the Shapley
value. In particular, we show that the core is non-empty and that the game
is super-additive, which indicates that these allocations are efficient and that
the grand coalition will form and is stable. To the best of our knowledge, our
study is the first cooperative extension of the proposed local public good game.
As local public good games have become a classic model and the cooperative
approach is often sensible in public good situations, we hope that our results
can find applications and extensions outside the area of personal data.

Our cooperative game extension assumes that players can form a coalition
and maximize the welfare of their coalition when all links to players outside
the coalition are removed and players outside the coalition do not take part
in the game. This is a sensible assumption since it is reasonable that players
who decide to join a platform within which information is shared will cooperate
towards a higher welfare (as long as the benefits are appropriately shared).
Other cooperative extensions should be studied to refine our model. Cooperative
approaches are widely adopted in many different fields (from political science to
inventory management) to predict the coalition structure and the way players
will negotiate to increase their utility. We hope that our work will enhance
cooperative game theory as a valuable tool in the Internet economics.

Our model proposes a new approach to the quantification of personal data
which is focused on the network structure. Differently from existing works, this
model allows analyzing how users can strategically manipulate the graph (and
not only the information revealed). Our results in Section [5|show how the links
between users may increase the value of personal data, due to the externalities.
In particular, users belonging to dense networks have very high incentives to
reveal their data; and users always have incentives to reveal existing links. These
results do not suggest, however, that users have incentives to create artificial
links in order to increase their own payoff. Indeed, our model is too simple
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to discuss creation of fake links, which may not be associated with the same
positive externality as true links and may instead have negative externality. An
interesting extension of our work will be to include this effect and analyze which
pairs of users (if any) have an incentive to create fake links. This will guide us
towards a fully incentive compatible model where users reveal links truthfully.

In our study, we have made a number of simplifying assumptions. In partic-
ular, in order to focus on the effect of the local public good aspect of personal
information derived from the graph on its value, we have assumed that the pri-
vate cost is the same for all players. As all previous researches have focused only
on the private cost of personal information, we believe that it was necessary to
clearly separate the effect of the position of a user in the graph from its private
cost and that our paper provides useful results in this direction. As future work,
we plan, however, to extend our analysis to the case of heterogeneous private
costs in order to quantify the value of personal data in more realistic scenarios
that combine heterogeneous private costs and local public good components.

A typical problem suffered by cooperative game-theory solutions is their
computational complexity. In this paper, we provide results about the core. In
the case of a convex game, its extreme points can be easily computed with a
greedy algorithm, but the computation becomes less efficient for a generic game.
Also the Shapley value cannot be computed efficiently. There exist, however,
various approximations of the Shapley value that can be computed efficiently
(such as some variations of Monte Carlo sampling methods [34]). We plan to
extend our work in two directions: (i) analyze how the use of approximations
affect our results and (i7) study the limit regime where the number of players
is very large and how this can provide more computationally efficient or more
intuitive results.
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APPENDIX
A Proof of Proposition 4.1

To prove the first inequality, we can observe that

/
v (S) = min max E U (0s,0N\5,9
%) TN\sE€A(DN\s) osE€A(Ds) £ \5:9)

<m0 | Soso) | 1{drs 3o ) -k
a5 EA( Ds) ds JEN;(gls)
- s, Sea [ (1 (a5 3 )
og€ s) icS JEN;(gls)

\
=
D
I

_ fldi+s Z dj | = kdi| =v(S),
ds€Ds £ [ JEN;(gls)

where the inequality is because we are minimizing on a smaller set (in particular,
we are fixing the space to one point), and then the minimum value is necessarily
higher. Moreover, to prove the opposite inequality, we can observe that

’
v'(S) = min max E Ui(os,on\s:9)
TN\sEA(DN\s) 0sE€ADs) £ ! YINAS: 9
>  max min E U (0s,0n\s,9)

7SEA(Ds) an\sEADN\s) {2
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Fldi+s > dj| —kdi| =v(S),
ds€Ds {2 JEN;(gls)

where the inequality follows from the standard inequality min max > max min,
often referred to as the maz-min inequality.

Il
=
o
b

B Proof of Corollary 4.2

Superadditivity follows from Proposition [} because the minimax representation
of a game in strategic form is always superadditive. Moreover, superadditivity
implies monotonicity.

C Proof of Theorem 4.3
For each ¢ € N, the equilibrium condition is given by

F;+6 Y d)=k,

JEN;(gls)
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and the efficiency condition is instead given by

Fls+o6 Y d)+6 > fds+s6 > di) =k

JENi(gls) JENi(gls) heN;(gls)

It follows that for each i € N, f'(d§+6 3" c N, (415 45) < /(402 e ni(g19) 45)
and, as f is concave, that foreach i € N, df+6 3"y, (4151 45 = di 02 e N, (g10) & -
These two inequalities are strict for at least one h € N if the graph is not totally
disconnected. As f is increasing, then for each i € N, f(df +63 ey, (g15) 95) 2
J(d + 63 en,(415) @), and the inequality is strict for . It follows that their
sum is s.t. V(d°, g) > V(d", g) for each graph g and the inequality is strict if g
is not totally disconnected.

D Proof of Theorem 4.4

To prove the nonemptyness of the core, we introduce the notion of balancedness.
A family B of coalitions is called a balanced collection provided that for each
S € B, there exists Ag > 0 such that, for all i € N, ZSeB, B3i As = 1. A very
important result, known as Bondareva-Shapley Theorem ([7] and [45]), states
that the cooperative game (IV,v) has a nonempty core if and only if for every
balanced collection B,

> Asu(S) < u(N). (10)

SeB

To prove the non-emptyness of the core, we show that (N,v) verifies .
At first, we write the characteristic function v as

maX{ZU = (f1,---, Fn) €0, +00)*",

i€S
fij =0Vij ¢ gls, fij = fj: Vi,j € S},

where U;(f;) = f(fu + 6Zj€N\{7,‘} fij) — kfi;. This definition is equivalent to
the definition in . The equivalence can be shown by writing the first order
conditions and by seeing they are the same than the first order conditions of
our original maximization problem defining . Then let B be any balanced
collection, and for each S C N, let fS = (fis)ies be an argmax allocation
which provides v(S). Define the allocation f, where for each ¢ € N, f, is the
following convex combination of the f7,

fi= Y. Asfl

SeB, Bai

25



The allocation f is feasible for v(NN), since for each i,j5 € N

fij = Z ASf;Sj_ Z /\S-fzsj

SeB, B3i SeB, B3i,j
s
= E AsFii = fii-
SeB, B3i

Then, by the concavity of the U;, we have that

> Asv(S)

sSeB

=) AsD U =D D AsU(FY)
seB €S i€EN SEB, S>3t

<Y U DD AsF | =D Uif) < u(N).
€N SeB, Soi 1EN

This proves and, consequently, the nonemptyness of the core.

E Example 4.5

Given a symmetric graph g, the corresponding game (N,v) is such that each
player is symmetric and then she will have Shapley value equal to v(N)/n.
Moreover, given the symmetry of the game, the core is a symmetric convex set,
which contains the symmetric vector given by the Shapley value.

F Example 4.6

Because of the symmetry property of the Shapley value, every player at the
periphery has the same value. Such a value is given by
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n—2\tl(n—-t—-1)!
> (") sy

t=0
n—2
S (n ; 2) (t+ 1)!(7;!— t—2)! o(Stra) — 0(Sua)]
t=0
2 =2 tn—t—1)
B ; ﬂ(it)z)! : ol Logs)
n—2
+ ; t'(T(Ln—t2)!2)! (t+ 1)!(2'— t—2)! Sa) — o(Su)
n—2 n—2o
= Z(—t 1)111(5'1) +y n(kn—tll) [0(Si2 — v(Sii1)]
t=0 =
n(n —1) 1
= B 1) n(ni 1)’()(51)
n—1 1 1
* v(Sh) + ~v(S)
X, ()
1 1 n—1
= —v(Sy) — v(Sy) — to(Sh)
n n(n—1) t:2[ ]

where we observe that the terms v(S;) —tv(Sy) are all bigger than 0 because of
the superadditivity of the game.

Because of the efficiency property, the center node has Shapley value given
by

¢c(v) = v(Sn) — (n = 1)¢p(v)

%’U(Sn) + - Z[’U(St) — to(51)].

t=2

To prove that the Shapley value belongs to the core, we need to prove that
for each S C N, >, o ¢ > v(S). At first, we observe that this is true for each
coalition of cardinality 1, as a consequence of the superadditivity of the gameﬂ
Second, we consider a coalition R of r > 2 peripheric players. We need to prove
that r¢p(v) > v(R), and this is true as

v(R) =1v(S1) < rdp(v)

SEfficient payoff allocations which satisfy this inequality for each coalition of cardinality 1
are called imputations. The Shapley value of a superadditive game is always an imputation
1.
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and the equality holds whenever we have disconnected players. Finally, we
consider a coalition R of r — 1 peripheric players and 1 central player. We need
to prove that

(r = Dep(v) + ¢c(v) = v(Sr),

which is equivalent to proving that

“0(Sa) + % S (S — (8] = o(Sy).
t=2

To show that this last inequality holds, it is sufficient to prove that
n r

for each r» < m. At first we observe that, as the neighborhood of a peripheric
player is contained in the neighborhood of the central player, there always exists
an efficient profile such that the central player is the only one to disclose a
nonzero amount of personal data. Denote df the disclosure level of such an
efficient profile for a star Sy with ¢ players. The inequality holds as

U(Sn) > U(Sr) o
n T
nf(dy,) — kd;, > rf(dy) — kd;. N
n T
k k

FUd5) = s, > ()~ d

and d¢ is the argmax of a function f(z)— éx which is increasing in the parameter
r, and then it will have a higher value at maximum for a higher parameter.

G Proof of Proposition 5.1

Both the properties follows from the definition of w. In fact, for each g € G(NV),
w(g) = vg(N(g9)) = max  W(dn(),9),

dn(g)EDN(q)

where

W(dng,9)= > |fldi+d > dj|—kd;

iEN(9) JEN;(9)

The aggregate utility W as a function of g is component additive, as for each
i € N(g), her utility depends only on her neighborhood, which is a subset of
the component to which player ¢ belongs to. Then, also the maximum value of
W as a function of g is component additive, as the players of each component
maximize independently their aggregate utility, and this gives the component
additivity of w. Moreover, as f and k do not depend on 4, the utility of each
player depends only on her position on the graph and not on her label, and this
gives the anonymity property for w.
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H Proof of Theorem 5.2

At first, observe that, given a graph g € G(IN), the monotonicity of the game
(N,v4) in Theorem (1] implies that w(g + i) > w(g) for each i € N. From this
it immediately follows that, given g, the graph ¢’ which contains all the links
of g and in addition all the loops, will provide a higher aggregate utility than
g. Such a graph is s.t. every player in N has at least one link, i.e., N(g') = N.
Moreover, for each i € N(g’), we observe that

fldi+o > di|<fldi+s > d;], (12)

JENi(g") JEN;(gVN)

because f is an increasing function and because g’ C g~ implies that N;(g') C
Ni(g"). Given the graph ¢’ with N(¢’) = N(¢"V) = N, implies that
W(dy,g') < W(dn,g") for each dy € Dy, from which it follows

wlg') = vy (N) = max W(dy, ')

N

< max W(dy, g) = vy (N) = w(g")
N

and this proves that g" is strongly efficient.

I Proof of Corollary 5.3

Let g C g~ be a strongly efficient graph. Then, N(g) = N follows from the
proof of Theorem Now, let d® be an efficient disclosure profile such that
W(d®, g) = w(g). Adding a link ij when player 7 is s.t. df # 0, the aggregate
utility becomes W (d°, g + ij) > W(d* g) (meaning that the maximum value
for the graph g +ij will be also greater). As a consequence, in order for g to be
efficient we need to have that if ij ¢ g, then df = d; =0.

J Proof of Proposition 5.4

At first, we observe that w(g|s) < w(g + ij|s) for each S C N, i.e., v4(S) <
Vg+i; (), and , in particular vy(S) = vg445(S) for each S C N\ {i,j}. By
writing the core conditions, we observe that they become more restrictive for
each player different from i and j, but eventually less restrictive for ¢ and j.

K Proof of Proposition 5.5

To show this result, it is sufficient to show that ¢;(g + ij,w) > ¢;(g,w) for at
least one ¢ € N. By the definition of Shapley value, in particular the result is
true if all the marginal contributions are s.t., w(g + ij|sugiy) — w(g +ijls) >
w(g|sugiy) — w(gls), i-e., if the marginal contributions of player i are always
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bigger when the link ¢j is present, and at least one inequality is strict. We
notice that w(g+ijls) = w(g|s), and this implies that it sufficient to show that
w(g +ij|sugiy) = w(glsugiy) for each S € N\ {i} and the inequality is strict
for at least one coalition S. We have that the weak inequality is true, because
of what we showed in the last part of the proof of Theorem

L. Example 5.6

We may observe at first that an efficient disclosure profile for both the graph is
given by the player on the left giving d s.t., f’(d) = k/3. Then, both the graph
are providing a value v(NN) = 3f(d) — kd. The first graph in Figure (a) is a
star Ss, s.t. each peripheric player has a Shapley value equal to

v(N) 1 v(N)

op = 3 6[”(52) —2v(S1)] < 3

While adding the link as in Figure ( b), the players become symmetric and
the ex-peripheric players now get a utility equal to v(N)/3, then strictly bigger
than before. Obviously, as the aggregate utility remains the same, the Shapley
value of the ex-central player decreases.
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